Constant angle surfaces in the Lorentzian Heisenberg group
نویسندگان
چکیده
منابع مشابه
Minimal Surfaces in the Heisenberg Group
We investigate the minimal surface problem in the three dimensional Heisenberg group, H , equipped with its standard Carnot-Carathéodory metric. Using a particular surface measure, we characterize minimal surfaces in terms of a sub-elliptic partial differential equation and prove an existence result for the Plateau problem in this setting. Further, we provide a link between our minimal surfaces...
متن کاملConstant angle surfaces in Minkowski space
A constant angle surface in Minkowski space is a spacelike surface whose unit normal vector field makes a constant hyperbolic angle with a fixed timelike vector. In this work we study and classify these surfaces. In particular, we show that they are flat. Next we prove that a tangent developable surface (resp. cylinder, cone) is a constant angle surface if and only if the generating curve is a ...
متن کاملThe Gauss Map of Minimal Surfaces in the Heisenberg Group
We study the Gauss map of minimal surfaces in the Heisenberg group Nil3 endowed with a left-invariant Riemannian metric. We prove that the Gauss map of a nowhere vertical minimal surface is harmonic into the hyperbolic plane H. Conversely, any nowhere antiholomorphic harmonic map into H is the Gauss map of a nowhere vertical minimal surface. Finally, we study the image of the Gauss map of compl...
متن کاملMinimal Surfaces and Harmonic Functions in the Heisenberg Group
We study the blow-up of H-perimeter minimizing sets in the Heisenberg group H, n ≥ 2. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archiv der Mathematik
سال: 2017
ISSN: 0003-889X,1420-8938
DOI: 10.1007/s00013-017-1104-6